Classification of gapped symmetric phases in one- dimensional spin systems Citation

نویسندگان

  • Chen
  • Xie
  • Zheng-Cheng Gu
  • Xiao-Gang Wen
  • Xie Chen
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Quantum many-body systems divide into a variety of phases with very different physical properties. The questions of what kinds of phases exist and how to identify them seem hard, especially for strongly interacting systems. Here we make an attempt to answer these questions for gapped interacting quantum spin systems whose ground states are short-range correlated. Based on the local unitary equivalence relation between short-range-correlated states in the same phase, we classify possible quantum phases for one-dimensional (1D) matrix product states, which represent well the class of 1D gapped ground states. We find that in the absence of any symmetry all states are equivalent to trivial product states, which means that there is no topological order in 1D. However, if a certain symmetry is required, many phases exist with different symmetry-protected topological orders. The symmetric local unitary equivalence relation also allows us to obtain some simple results for quantum phases in higher dimensions when some symmetries are present.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete classification of one-dimensional gapped quantum phases in interacting spin systems Citation

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Quantum phases with different orders exist with or without breaking the symmetry of the system. Recently, a classif...

متن کامل

Product Vacua with Boundary States and the Classification of Gapped Phases

We address the question of the classification of gapped ground states in one dimension that cannot be distinguished by a local order parameter. We introduce a family of quantum spin systems on the one-dimensional chain that have a unique gapped ground state in the thermodynamic limit that is a simple product state but which on the left and right half-infinite chains, have additional zero energy...

متن کامل

2 5 Ja n 20 05 One - Dimensional Magnetism

We present an up-to-date survey of theoretical concepts and results in the field of one-dimensional magnetism and of their relevance to experiments and real materials. Main emphasis of the chapter is on quantum phenomena in models of localized spins with isotropic exchange and additional interactions from anisotropy and external magnetic fields. Three sections deal with the main classes of mode...

متن کامل

Universal temperature dependence of the magnetization of gapped spin chains.

A Haldane chain under applied field is analyzed numerically, and a clear minimum of magnetization is observed as a function of temperature. We elucidate its origin using the effective theory near the critical field and propose a simple method to estimate the gap from the magnetization at finite temperatures. We also demonstrate that there exists a relation between the temperature dependence of ...

متن کامل

Spin-orbital gapped phase with least symmetry breaking in the one-dimensional symmetrically coupled spin-orbital model

To describe the spin-orbital energy gap formation in the one-dimensional symmetrically coupled spin-orbital model, we propose a simple mean field theory based on an SU(4) constraint fermion representation of spins and orbitals. A spin-orbital gapped phase is formed due to a marginally relevant spin-orbital valence bond pairing interaction. The energy gap of the spin and orbital excitations grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011